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The stochastic Langevin equation{
dXt = Vtdt , X0 = x ∈ Rd

dVt = −γVtdt −∇F (Xt )dt + dWt , V0 = v ∈ Rd

describes the motion of a particle in a smooth potential field, subject
to friction and stochastic forcing.

Here W is a d-dimensional standard Brownian motion, γ > 0 is a
friction constant (which ensures dissipation), and F : Rd → R is a
non-negative smooth function.
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The Langevin equation above is degenerate since the noise and the
dissipation only appear in the momentum part. However, due to the
interaction between position and momentum, noise and dissipation
get transmitted from the momentum part to the position part, which
ultimately leads to ergodicity and exponential convergence to
equilibrium.

For some literature on stochastic Langevin equation, see Bou-Rabee
and Sanz-Serna (AAP, 2017); Cerrai and Freidlin (J. Stat.Phys,
2015); Eberle and Guillin (2017); Hairer and Mattingly (CMP 2009);
Ottobre and Pavliotis (JFA, 2012); Wu (SPA, 2001); . . . .
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The generator of the stochastic Langevin equation is L = L1 + L2,
where

L1 := 1
2 ∆v − γv · ∇v

is the generator of an OU process and

L2 := v · ∇x −∇F (x) · ∇v

is the Liouville operator associated with the Hamiltonian
H(x , v) := 1

2 |v |
2 + F (x).

Most of the papers above rely on the existence a Lyapunov function.
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Under the condition that there exist constants C0 > 0 and ϑ ∈ (0,1)
such that

1
2
〈x ,∇F (x)〉 ≥ ϑF (x) + γ2ϑ(2− ϑ)

8(1− ϑ)
|x |2 − C0, (1)

one can check that

H(x , v) := H(x , v) + γ
2 〈x , v〉+ γ2

4 |x |
2 + 1 (2)

is a good choice of a Lyapunov function, i.e., for some positive
constants c0, K1 and all x , v ∈ Rd ,

H(x , v) ≥ 1 + γ2

12 |x |
2 + 1

8 |v |
2 and LH(x , v) ≤ −c0H(x , v) + K1.
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Recently, stochastic Langevin equations with singular potential filed F
have been studied, see Conrad and Grothaus (J. Evol. Eq., 2010);
Cooke, Herzog and Mattingly (Comm. Math. Sci. 2017) and
Grothhaus and Stilgenbauer (Integr. Eq. Op Th 2015).

The exponential ergodicity was also obtained by constructing explicit
Lyapunov functions.
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We study the existence and uniqueness of strong solutions of the
stochastic Langevin equation{

dXt = Vtdt , X0 = x ∈ Rd

dVt = −γVtdt −∇F (Xt )dt + G(Vt )dt + dWt , V0 = v ∈ Rd

under the presence of a singular velocity field G. We also study the
exponential ergodicity of this stochastic Langevin equation. The
singular velocity field destroys the dissipation in the momentum part
and makes the classical Lyapunov condition very difficult to check, if
possible at all.
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Before stating our main result, we first recall the following definition

Definition

Suppose H is a positive function on R2d . The invariant distribution µ
(if exist) of an R2d -valued Markov process Mt is said to be H-uniformly
exponentially ergodic, if there exist constants C, η > 0 such that for all
y ∈ R2d and all Borel functions f : R2d → Rd with |f | ≤ H,∣∣Ey f (Mt )− µ(f )

∣∣ ≤ CH(y)e−ηt , ∀t ≥ 0,

where Ey is the expectation with respect to Py , the law of M with initial
value M0 = y , and µ(f ) denotes the integral of f respect to µ.
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Our main result is

Theorem 1

Let G ∈ Lp(Rd ) with (2 ∨ d) < p ≤ ∞. For each y := (x , v)T ∈ R2d ,
our stochastic Langevin equation admits a unique strong solution
Yt = (Xt ,Vt )

T. Moreover, if we further assume that (1) holds together
with one of the following conditions:
(A) |∇F (x)|2 ≤ C1(1 + |x |2 + F (x));
(B) |∇F (x)| ≤ C1(1 + |x |2 + F (x)) and G ∈ Lp(Rd ) with 2d < p ≤ ∞,
where C1 > 0 is a constant, then Yt has a unique invariant distribution
µ which is H-uniformly exponentially ergodic with H being the
function defined in (2).
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Condition (A) includes the case of a harmonic potential F (x) = 1
2 |x |

2,
while any polynomial F which grows at infinity like |x |2` for some
positive integer ` satisfies condition (B). The presence of the singular
term G can be used to describe stochastic non-linear oscillators as
well as degenerate particle systems arising in math physics. Here is a
particular example.

{
dXt = Vtdt , X0 = x ∈ Rd

dVt = −γVtdt − Xtdt + 1
|Vt |α 1|Vt |≤K dt + dWt , V0 = v ∈ Rd

where K > 0 and α ∈ (0,1) are constants.
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The main difficulty for studying our stochastic Langevin equation with
singular velocity field that we have to treat simultaneously the singular
term G and the super-linear growth part F in the coefficients. Here is
a brief description of our strategy.

To prove the well-posedness of the stochastic Langevin equaton, we
will use Zvonkin’s transform combined with a local Krylov’s estimate
and a localization technique. The super-linear growth of F makes
deriving our local Krylov’s estimate pretty challenging.
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To study the long time behavior, the localization technique is of no
help. This is why we need some growth conditions on F to derive a
global Krylov’s estimate for the solution. Conditions (A) and (B)
reflect that some balances are needed between the integrability of G
and the growth property of F .

In a recent paper by Xie and Zhang, ergodicity of non-degenerate
SDE’s with singular dissipative drifts was established by using
Zvonkin’s transform to remove the singular drift and the fact that
dissipativity is preserved by Zvonkin’s transform.
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Such an idea does not work for stochastic Langevin equation. The
Hamiltonian structure will completely destroyed by Zvonkin’s
transform. It is very difficult, if possible at all, to find a Lyapunov
function for the equation.

To overcome this difficulty, we will use Krylov’s estimate to get a good
control on the expectation of the singular part, and then combine with
the Lyapunov technique to get the existence of invariant distributions.
The uniqueness of invariant distribution follows by the strong Feller
property and irreducibility of the unique strong solution.
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For every f ∈ Lp(Rd ) with p > (d ∨ 2), we have

sup
v∈Rd

Eexp

{∫ t

0
|f (v + Ws)|2ds

}
≤ Cd‖f‖peCd t ,

where Cd > 0 is a constant. Using Girsanov’s theorem, we can prove
the following local Krylov’s estimate.
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Lemma 2

Assume that G ∈ Lp(Rd ) with p > (d ∨ 2). Then, for every initial value
y = (x , v)T ∈ R2d , there exists a weak solution to the stochastic
Langevin equation. Moreover, let (Xt (x),Vt (v))T solve the stochastic
Langevin equation and for every R > 0, define

τ v
R := inf{t ≥ 0 : |Vt (v)| ≥ R}. (3)

Then, for every T > 0 and f ∈ Lq(Rd ) with q > (d/2) ∨ 1, we have

Eexp

{∫ T∧τ v
R

0
f (Vs(v))ds

}
≤ CReCRT ,

where CR = C(d , x , v ,R, ‖f‖q , ‖G‖p) is a positive constant which is
uniformly bounded for (x , v) in compact sets and CR → 0 as
‖f‖q → 0.
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We also show that that for every f ∈ Lq(Rd ) with q > (d/2) ∨ 1, it
holds that

E

(∫ T∧τ v
R

0
f (Vs(v))ds

)
≤ CReCRT ,

where CR → 0 as ‖f‖q → 0.
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To derive our global Krylov’s estimate, we will need to consider the
following quasi-linear elliptic equation:

λu(x)− 1
2 ∆u(x)−G(x) · ∇u(x)− κ|∇u(x)|2 = f (x), (4)

where λ, κ ≥ 0 are constants.

The following result will be used to prove our global Krylov’s estimate.
The key point of the proof of the following result is to use Sobolev’s
embeddings to handle the non-linear term |∇u|2.
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Lemma 3
Let κ ≥ 0 be a constant.

(i) Suppose that G ∈ Lp(Rd ) with p > d . Then for every f ∈ Lq(Rd )
with q > d/2, there exists a λ0 > 0 such that for all λ ≥ λ0, (4)
admits a unique solution u ∈W 2,q(Rd ). Moreover, we have

λ‖u‖q +
√
λ‖∇u‖q + ‖∇2u‖q ≤ C1‖f‖q ,

where C1 = C(d , ‖G‖p) > 0 is a constant.
(ii) Let p and q be as in part (i). Given two sequences of functions

Gn, fn ∈ C∞0 (Rd ) such that Gn → G in Lp(Rd ) and fn → f in
Lq(Rd ). Let un be the corresponding solution to (4) with G, f
replaced by Gn, fn. Then we have un ∈ C2

b (Rd ) ∩W 2,q(Rd ) with

sup
n≥1
‖un‖2,q ≤ C2 and ‖un − u‖2,q ≤ C2

(
‖fn − f‖q + ‖Gn −G‖p

)
,

where C2 = C(d , ‖G‖p, ‖f‖q) is a positive constant.
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Here is our global Krylov’s estimate under (A).

Lemma 4

Assume that G ∈ Lp(Rd ) with p > (d ∨ 2) and that condition (A)
holds. Let (Xt (x),Vt (v))T solve our stochastic Langevin equation.
Then, for any f ∈ Lq(Rd ) with q > (d/2) ∨ 1, there exists a constant
C = C(d , x , v , ‖G‖p, ‖f‖q) > 0 such that for all t ≥ 0,

E

(∫ t

0
f (Vs)ds

)
≤ C(1 + t).
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Here is our global Krylov’s estimate under (B).

Lemma 5

Assume that condition (B) holds and that (Xt (x),Vt (v))T solves our
stochastic Langevin equation.. Then, for every f ∈ Lq(Rd ) with q > d ,
there exists a constant C = C(d , x , v , ‖G‖p, ‖f‖q) > 0 such that

E

(∫ t

0
f (Vs)ds

)
≤ C(1 + t), ∀t ≥ 0.
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To use Zvonkin’s transform to remove the singular term G(Vt ), we let
u be the solution to the following equation

λu(x)− 1
2

∆u(x)−G(x) · ∇u(x) = G(x). (5)

Since G ∈ Lp(Rd ) with p > d , we have u ∈W 2,p(Rd ). By the Sobolev
embedding, we can get that u ∈ C1

b (Rd ).
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Lemma 6

Let Yt = (Xt ,Vt )
T solve our stochastic Langevin equation and τ v

R be
given by (3). Then we also have that for t ≤ τ v

R ,{
dXt = Vtdt ,
dVt = [−γVt −∇F (Xt )]σ(Vt )dt + [λu(Vt )dt − du(Vt )] + σ(Vt )dWt ,

(6)
with initial value (x , v)T, where

σ(v) :=
(
I +∇u(v)

)
.

In the new SDE (6), the singular drift disappears, but the Hamiltonian
structure has been totally destroyed. Thus it is difficult to find a
Lyapunov function for (6).
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Proof of strong well-posedness

Weak existence has been given in Lemma 2. By the
Yamada-Watanabe principle, it suffices to show the pathwise
uniqueness. Consider two solutions Yt (y) :=

(
Xt (x),Vt (v)

)T and
Yt (ŷ) :=

(
Xt (x̂),Vt (v̂)

)T, defined on the same probability space and
with respect to the same Brownian motion, starting at y := (x , v)T

and ŷ := (x̂ , v̂)T, respectively. Define

ζR := inf{t ≥ 0 : |Vt (v)| ∨ |Vt (v̂)| ≥ R}.

Let us fix T > 0 below. We proceed to prove that for every β ∈ (0,1),
t ≤ T and R > 0, there exists a constant CR,T > 0 such that for all
y , ŷ ∈ R2d with |y |, |ŷ | ≤ R,

E|Yt∧ζR (y)− Yt∧ζR (ŷ)|2β ≤ CR,T |y − ŷ |2β . (7)

Once this is proved, we can apply the special case y = ŷ to get the
pathwise uniqueness of solutions
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Proof of strong well-posedness (cont)

Set X̃t := Xt (x)− Xt (x̂) and Ṽt := Vt (v)− Vt (v̂). Then, by Lemma 6
we know that the difference process (X̃t , Ṽt )

T satisfies the following
equation: for t ≤ ζR ,dX̃t = Ṽtdt ,

dṼt =
(
λ
[
u
(
Vt (v)

)
− u

(
Vt (v̂)

)]
dt − d [u(Vt (v̂))− u(Vt (v̂))]

)
+ξ(X̃t , Ṽt )dt +

[
σ
(
Vt (v̂)

)
− σ

(
Vt (v̂)

)]
dWt ,

with initial value X̃0 = x − x̂ and Ṽ0 = v − v̂ , where ξ(X̃t , Ṽt ) is defined
as

[−γVt (v)−∇F
(
Xt (x)

)
]σ
(
Vt (v)

)
− [−γVt (v̂)−∇F (Xt

(
x̂)
)
]σ
(
Vt (v̂)

)
.
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Proof of strong well-posedness (cont)

Note that for T > 0 and t ≤ T ∧ ζR ,

|Xt (x)| ∨ |Xt (x̂)| ≤ R + RT .

Since u ∈W 2,p(Rd ), there exists a constant CR,T > 0 such that

ξ(X̃t∧ζR , Ṽt∧ζR ) ≤ CR,T (|Ṽt |+ |X̃t |) + CR,T |Ṽt | ·
[
g
(
Vt (v)

)
+ g

(
Vt (v̂)

)]
,

where the non-negative function g ∈ Lp(Rd ) with p > d .
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Proof of strong well-posedness (cont)

Now, by Itô’s formula, we get for every t ≤ T ,

|X̃t∧ζR |
2 + |Ṽt∧ζR |

2

≤ |x − x̂ |2 + C0|v − v̂ |2 + Cλ,R,T
∫ t∧ζR

0

(
|X̃s|2 + |Ṽs|2

)
ds

+ CR,T

∫ t∧ζR

0
|Ṽs|2dAs +

∫ t∧ζR

0

[
σ
(
Vs(v̂)

)
− σ

(
Vs(v̂)

)]
ṼsdWs,

where C0 > 0, and At is a continuous increasing process given by

At :=

∫ t

0

(
g
(
Vs(v)

)
+ g

(
Vs(v̂)

))2
ds.
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Proof of strong well-posedness (cont)

In view of Lemma 2, we have that for every λ > 0,

EeλAt∧ζR ≤ CR,T‖g‖peCR,T <∞.

This in particular yields (7) by a result from Xie-Zhang (17).
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Proof of ergodicity

By our assumption on F and the definition of H, Lemma 4 in the case
of (A) and Lemma 5 in the case of (B) to get that

EH(Xt ,Vt )

≤ H(x , v) + c1t − c2E

(∫ t

0
H(Xs,Vs)ds

)
+ c3E

(∫ t

0
|G(Vs)|2ds

)

≤ H(x , v) + c4(1 + t)− c2E

(∫ t

0
H(Xs,Vs)ds

)
.

By Gronwall’s inequality, we have

sup
t≥0

EH(Xt ,Vt ) ≤ C <∞, (8)

which implies the existence of invariant distributions.
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Proof of ergodicity (cont)

One can show that the strong solution is strong Feller and irreducible.
Thus, the exponential ergodicity follows by a standard argument.
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Thank you!
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